Journal cover Journal topic
Geoscientific Instrumentation, Methods and Data Systems An interactive open-access journal of the European Geosciences Union
doi:10.5194/gi-2016-13
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
19 Jul 2016
Review status
A revision of this discussion paper was accepted for the journal Geoscientific Instrumentation, Methods and Data Systems (GI) and is expected to appear here in due course.
A low-cost acoustic permeameter
Stephen A. Drake1, John S. Selker2, and Chad W. Higgins2 1CEOAS, Oregon State University, Corvallis, 97333, USA
2BEE, Oregon State University, Corvallis, 97333, USA
Abstract. Intrinsic permeability is an important parameter that regulates air exchange through porous media such as snow. Standard methods of measuring snow permeability are inconvenient to perform outdoors, fraught with sampling errors and require specialized equipment, while bringing intact samples back to the laboratory is also challenging. To address these issues, we designed, built, and tested a low-cost acoustic permeameter that allows computation of volume-averaged intrinsic permeability for a homogenous medium. Permeameter elements were designed for use in snow but the measurement methods are not snow-specific. The electronic components, consisting of a signal generator, amplifier, speaker, microphone and oscilloscope, are inexpensive and easily obtainable. The system is suitable for outdoor use when it is not precipitating but the electrical components require protection from the elements in inclement weather. The permeameter can be operated with a microphone either internally mounted or buried a known depth in the medium. The calibration method depends on choice of microphone positioning. For an externally located microphone, calibration was based on a low-frequency approximation applied at 500 Hz that provided an estimate of both intrinsic permeability and tortuosity. The low-frequency approximation that we used is valid up to 2 kHz but we chose 500 Hz because data reproducibility was maximized at this frequency. For an internally mounted microphone, calibration was based on attenuation at 50 Hz and returned only intrinsic permeability. We found that 50 Hz corresponded to a wavelength that minimized resonance frequencies in the acoustic tube and was also within the response limitations of the microphone. We used reticulated foam of known permeability (ranging from 2 × 10−7 m2 to 3 × 10−9 m2) and estimated tortuosity of 1.05 to validate both methods. For the externally mounted microphone the mean normalized standard deviation was 6 % for permeability and 2 % for tortuosity. The mean relative error from known measurements was 17 % for permeability and 2 % for tortuosity. For the internally mounted microphone the mean normalized standard deviation for permeability was 10 % and the relative error was also 10 %. Permeability determination for an externally mounted microphone is less sensitive to environmental noise than is the internally mounted microphone and is therefore the recommended method. The approximation using the internally mounted microphone was developed as an alternative for circumstances in which placing the microphone in the medium was not feasible. Environmental noise degrades precision of both methods and is recognizable as increased scatter for replicate data points.

Citation: Drake, S. A., Selker, J. S., and Higgins, C. W.: A low-cost acoustic permeameter, Geosci. Instrum. Method. Data Syst. Discuss., doi:10.5194/gi-2016-13, in review, 2016.
Stephen A. Drake et al.
Stephen A. Drake et al.

Viewed

Total article views: 154 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
122 21 11 154 13 14

Views and downloads (calculated since 19 Jul 2016)

Cumulative views and downloads (calculated since 19 Jul 2016)

Saved

Discussed

Latest update: 24 Mar 2017
Publications Copernicus
Download
Short summary
Intrinsic permeability of snow is an important parameter that regulates snow/atmosphere exchange. Current permeability measurements require specialized equipment to acquire in the field and have increased variability with increasing snow heterogeneity. To facilitate a field-based, volume-averaged measure of permeability we designed and assembled an acoustic permeameter. Using reticulated foam samples of known permeability, the mean relative error from known values was less than 20 %.
Intrinsic permeability of snow is an important parameter that regulates snow/atmosphere...
Share