Interactive comment on “Observing desert dust devils with a pressure logger” by R. D. Lorenz

R.nbsp;G. Keanini (Referee)
rkeanini@uncc.edu

Received and published: 1 November 2012

This paper provides practical information on setting up low cost, stand-alone pressure sensors for detecting ground-level/near-ground-level atmospheric vortices. I echo the review provided by Professor Colin Wilson: this paper will allow relatively low-cost monitoring of dust devil, and more generally, ground-level convective flows. In order to add to the discussion, I will merely point out (or more accurately propose) a potential, though possibly peripheral application:

1) Given simultaneous pressure data from two separate sensors, as well as simultaneous ground-level and elevated (above ground) temperature measurements, then both the approximate vertical convective velocity scale, \(w \), as well as the approximate (radial, near-ground) size of the region influenced by/feeding dust to the dust devil, \(R \), can be estimated, as follows:
i) In a simplified picture where the vertical devil is fed by a radially-inward, near-ground-level flow, and operating under the assumption that vertical momentum, \(\rho w^2 \sim \rho g \beta \Delta T \), where \(\Delta T \) is the measured temperature difference, \(l \) is the vertical separation between measured temperatures, and \(\beta \) is the volumetric expansion coefficient, then \(w \sim \sqrt{g \beta \Delta T l} \).

ii) Given \(w \), and assuming that the radial, inward, dust-laden flow begins with a velocity near zero, at a characteristic radius, \(R \), then continuity requires that \(w/l \sim u/R \), where \(u \) is the characteristic speed of the radial, inward flow.

iii) Since \(u \) can be estimated via momentum conservation as \(u \sim \Delta P/\rho \), where \(\Delta P \) is the measured pressure difference (at the the spatially separated sensor locations), then \(R \sim ul/w \sim \Delta Pl/(\rho \sqrt{g \beta \Delta T l}) \). [Note, one would have to ensure that the flow between pressure sensor locations is strongly radial. This, in turn, might require a third, spatially separated pressure measurement.]

Given statistical information, for example, on \(w, u \) and \(R \) (obtained over extended periods), one could then gain a semi-quantitative picture of: a) dust devil strength (with respect to dust transport, where strength, in this case, is indicated by \(w \)), and b) devil (dust) mass transport, as indicated by both \(u \) and \(R \).