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Abstract. A method for the combined processing measurements of the projections and the absolute magnitudes of 

geomagnetic field intensity vectors, based on mathematical technology of local approximation models, was proposed. The 

approach realized in this paper, based on the proposed method, provides the increase of accuracy of the measurements of the 

projections of the geomagnetic intensity vector. An algorithm for the two-stage combined processing of the measurements of 

projections and absolute magnitudes of geomagnetic field intensity vectors was developed. The operation of the combined 15 

processing algorithm was tested on models and observatory measurements. The estimates of the combined processing 

algorithm errors were obtained using statistical modelling. The reduction of the root mean square error values was achieved 

for the estimates of the projections of geomagnetic field intensity vectors. 

1 Introduction 

In this manuscript, a method and an algorithm for combined processing measurements of the components (projections and 20 

the absolute magnitudes) of geomagnetic field intensity vectors is proposed. The approach realized in the paper, based on the 

proposed method, provides the increase of accuracy of the measurements of the projections of the geomagnetic intensity 

vector. The considered measurements are carried out by INTERMAGNET observatories equipped with systems of vector 

and scalar magnetometers; the definitive type data are used, containing systematic errors equal to zero (Geomagnetic, 2011; 

INTERMAGNET, 2018). The measurement errors of vector and scalar magnetometers are represented by random normally 25 

distributed errors with zero expectation and a predetermined variance. As usual, the measurement errors of the projections of 

geomagnetic field intensity vectors are significantly larger than the ones of the absolute vector magnitudes performed by the 

mentioned measurement devices. The formulation of the problem of reducing the noise root-mean-square (RMS) error 

values in the geomagnetic field intensity projection measurements due to combined processing of the values of all its 

components. 30 

In the following research: 
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1. a method for combined processing of the measurements of projections and absolute magnitudes of geomagnetic 

field intensity vectors is formulated, based on formation of the sequences of piecewise-constant local models followed by 

their weighted averaging; 

2. a two-stage algorithm for combined processing of the measurements of projections and absolute magnitudes of 

geomagnetic field intensity vectors is developed; 5 

3. the testing of the algorithm on model and observatory data is performed; 

4. the estimates of the algorithm errors, calculated using statistical modelling, are presented; the reduction of the RMS 

noise errors for the estimates of the geomagnetic field vector projections is proved.  

The materials of this research paper are intended for specialists (magnetologists) engaged in tasks of digital processing of 

geomagnetic field measurements. The need to reduce noise errors in estimates of the projections of the geomagnetic field 10 

intensity vectors measured by vector magnetometers arises in a number of technical and scientific applications. For instance, 

technogenic disturbances can affect the geomagnetic observatory hardware, affecting vector and scalar magnetometers 

differently: as a rule, the noise errors from vector magnetometers occurring due to such interference are greater than the 

noise errors from scalar magnetometers. The decrease of noise errors from vector magnetometers is necessary, for example, 

for calculation of the gradients of the projections of the geomagnetic field intensity vectors in the navigation problems. 15 

Nowadays the reduction of errors for vector magnetometers (with certain assumptions) is achieved using optimization of the 

calibration from scalar magnetometers (Merrayo et al., 2000; Olsen et al., 2003) or refinement of calibration characteristics  

(Soborov et al., 2008) based on special mathematical processing. In the measurement systems considered in this paper, in 

fact, parallel measurements are performed; a possible algorithm providing the decrease of errors for such measurements can 

be formed based on Kalman filters (Shakhtarin, 2008). However, due to the peculiarities of this problem, the construction of 20 

the resulting nonlinear filters is associated with certain problems due to the inaccuracies of linearization and the accepted 

hypothesis concerning the type of initial intensity vector function. In the research (Soloviev et al., 2018), joint processing of 

vector and scalar magnetometer measurements is aimed at improving the calibration accuracy of the so-called baseline, 

which only indirectly provides the considered reduction in errors. The combined processing of measurements of projections 

and absolute magnitudes of geomagnetic field intensity vectors proposed in this paper is significantly free from the 25 

mentioned problems. 

2 A method for combined processing of measurements of projections and absolute magnitudes of geomagnetic field 

intensity vectors 

Let 𝐻1(𝑇𝑖),   𝐻2(𝑇𝑖),  𝐻3(𝑇𝑖) and 𝐻0(𝑇𝑖) = √𝐻1
2(𝑇𝑖) + 𝐻2

2(𝑇𝑖) + 𝐻3
2(𝑇𝑖) be the initial functions for the projections and 

absolute magnitudes of the geomagnetic field intensity vectors; we assume that 𝑌1(𝑇𝑖), 𝑌2(𝑇𝑖), 𝑌3(𝑇𝑖), 𝑌0(𝑇𝑖) are their 30 

values registered by vector and scalar magnetometers, 𝑖 = 0, 1, … , 𝑁𝑓 − 1, the sampling interval 𝑇 = 1 second; 1-second 

measurements from INTERMAGNET observatories are analyzed in this study. We represent the noise errors of the 
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measurement values 𝑊𝑛(𝑇𝑖) , 𝑛 = 0, … ,3 , in the form of uncorrelated, normally distributed random values with zero 

mathematical expectations and variances. Such representation of errors is, to a large extent, valid for cases of large 

technogenic noises that can occur when geomagnetic measurements are carried out. We consider, with some assumptions, 

that the spectrum of random components for the functions of the geomagnetic field is concentrated almost entirely in the 

low-frequency domain; the spectrum of random measurement errors is concentrated in the high-frequency domain. 5 

We assume that the measurements, the initial functions and the errors are related by linear additive dependences:  

𝑌𝑛(𝑇𝑖) = 𝐻𝑛(𝑇𝑖) +𝑊𝑛(𝑇𝑖), 𝑛 = 0,… ,3. 

Using the specified observation values 𝑌𝑛(𝑇𝑖) we demand the determination of the estimates 𝑌1
 ∘(𝑇𝑖), 𝑌2

 ∘(𝑇𝑖), 𝑌3
 ∘(𝑇𝑖),  𝑖 = 0,

1, … , 𝑁𝑓 − 1, that would be close to the initial functions of the intensity vector projections. We perform the combined 

processing for the projections and magnitudes of the geomagnetic field intensity vectors in two stages. 

At the first stage, on the main interval with the points 𝑖 = 0, 1, … , 𝑁𝑓 − 1, we introduce the N-point sliding local intervals 10 

with limiting points 𝑁1𝑗, 𝑁2𝑗, and with the sliding step 𝑁𝑑 and the quantity of sliding intervals 𝑚0.  

𝑁1𝑗 = 𝑁𝑑(𝑗 − 1), 𝑁2𝑗 = 𝑁1𝑗 + 𝑁 − 1, 𝑗 = 1,… ,𝑚0.  (1) 

To simplify the considerations, we require the relations of multiplicity 𝑚𝑁 = 𝑁𝑓 and 𝑁𝑑𝑚𝑑 = 𝑁, here 𝑚, 𝑚𝑑 are integers, 

then 𝑚0 = 𝑚𝑑(𝑚 − 1) + 1. 

For a sliding interval with a number 𝑗 we define the model functions of a form 𝑌𝑀1 (𝑐1𝑗 , 𝑇𝑖),   𝑌𝑀2 (𝑐2𝑗 , 𝑇𝑖), 𝑌𝑀3 (𝑐3𝑗 , 𝑇𝑖), 15 

here 𝑐𝑛𝑗 are the vectors of model parameters, n = 1, 2, 3. These model functions can be, in particular, polynomial, piecewise 

constant, piecewise linear etc. The size of local intervals determines the approximation errors. At small N there will be large 

fluctuation errors, and at large N there will be large systematic approximation errors. 

Based on the above-defined measured values, models and the maximum likelihood method (Kramer 1975), we define the 

local functional 𝑆(𝑐𝑗 , 𝑌𝑗)  which determines the measure of closeness for local measurements and models, similar to 20 

(Getmanov., 2013) as the sum of the four functionals:  

𝑆0 (𝑐1𝑗 , 𝑐2𝑗 , 𝑐3𝑗 , 𝑌0𝑗) = ∑  

𝑁2𝑗

𝑖=𝑁1𝑗 (

 𝑌0𝑗(𝑇𝑖) − √∑ 

3

𝑟=1

𝑌𝑀𝑟
2 (𝑐𝑟𝑗 , 𝑇𝑖)

)

 

2

, 

𝑆𝑛 (𝑐𝑛𝑗 , 𝑌𝑛𝑗) = ∑  
𝑁2𝑗
𝑖=𝑁1𝑗

(𝑌𝑛𝑗(𝑇𝑖) − 𝑌𝑀𝑛 (𝑐𝑛𝑗 , 𝑇𝑖))
2

,  n = 1, 2, 3, 

𝑆(𝑐𝑗 , 𝑌𝑗) = 𝑆0 (𝑐1𝑗 , 𝑐2𝑗 , 𝑐3𝑗 , 𝑌0𝑗) + ∑  3
𝑛=1 𝑆𝑛 (𝑐𝑛𝑗 , 𝑌𝑛𝑗).   (2) 

Here 𝑐𝑗
𝑇 = (𝑐1𝑗

𝑇 , 𝑐2𝑗
𝑇 , 𝑐3𝑗

𝑇 ),   𝑌𝑗
𝑇 = (𝑌1𝑗

𝑇 , 𝑌2𝑗
𝑇 , 𝑌3𝑗

𝑇 ) are the parameter and value vectors related to the j 𝑡ℎ local interval. Taking 

into account the assumption of errors in measurements, we carry out the identification of the optimal estimates of the model 25 

parameters 𝑐𝑗
 ∘ using the solutions of the sequence of optimization problems for local functionals  
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 𝑐𝑗
 ∘ = arg {min

𝑐𝑗
𝑆(𝑐𝑗,  𝑌𝑗   )}  , 𝑗 = 1, … ,𝑚0, 𝑐

 ∘
𝑇
= (𝑐1

 ∘
𝑇
, 𝑐2
 ∘
𝑇
, 𝑐3

 ∘
𝑇
).  (3) 

We perform the construction of sliding local models in an obvious way by assuming n = 1, 2, 3, j = 1,…,m 0.  

 𝑌𝑛𝑗
 ∘ (𝑇𝑖) = 𝑌𝑀𝑛 (𝑐𝑛𝑗

 ∘ , 𝑇𝑖) ,𝑁1𝑗 ≤ 𝑖 ≤ 𝑁2𝑗 , 𝑌𝑛𝑗
 ∘ (𝑇𝑖) = 0,0 ≤ 𝑖 < 𝑁1𝑗 , 𝑁2𝑗 < 𝑖 ≤ 𝑁𝑓 − 1  (4) 

 

At the second stage we introduce the unit functions 𝐸𝑗(𝑇𝑖), equal to zero outside of local sliding intervals, add them together 5 

to get 𝐸(𝑇𝑖) and calculate the sequence of weighting coefficients 𝑅(𝑇𝑖)  

𝐸𝑗(𝑇𝑖) = 1, 𝑁1𝑗 ≤ 𝑖 ≤ 𝑁2𝑗 , 𝐸𝑗(𝑇𝑖) = 0,0 ≤ 𝑖 < 𝑁1𝑗 , 𝑁2𝑗 < 𝑖 ≤ 𝑁𝑓 − 1  

𝐸(𝑇𝑖) = ∑  
𝑚0
𝑗=1 𝐸𝑗(𝑇𝑖), 𝑅(𝑇𝑖) = 1/𝐸(𝑇𝑖), 𝑖 = 0, 1, … , 𝑁𝑓 − 1.  (5) 

Let us perform the weighting averaging using Eq. (5) for the sum of the sliding local model sequence (Getmanov et al., 

2015)  10 

𝑌𝑛
 ∘(𝑇𝑖) = 𝑅(𝑇𝑖)∑  

𝑚0
𝑗=1 𝑌𝑛𝑗

 ∘ (𝑇𝑖). (6) 

We calculate the estimates 𝑌𝑛
 ∘(𝑇𝑖),   𝑖 = 0, 1, … , 𝑁𝑓 − 1, n = 1, 2, 3, based on linear operations in Eq. (6) corresponding to 

the second stage. 

The method of combined two-step processing of the values of the projections and the absolute magnitudes of geomagnetic 

field intensity vectors consists in the sequential execution of the first and second stages in accordance with the Eq. (2), (3), 15 

(4) and (5), (6). 

3 An algorithm for two-stage processing of measurements of projections and absolute magnitudes of geomagnetic 

field intensity vectors for piecewise-constant models 

Let us build the local intervals using Eq. (1) and define the local models on them as piecewise constant functions 𝑌𝑀𝑛 (𝑐𝑛𝑗 ,

𝑇𝑖) = 𝑐𝑛𝑗 , j = 1,…,m 0, 𝑁1𝑗 ≤ 𝑖 ≤ 𝑁2𝑗. Obviously, in this case, at local intervals with duration NT the initial functions for 20 

geomagnetic field vector projections must be approximately constant; the local interval can be expanded if we treat 

piecewise constant functions as local models. Let us formulate the equation for local functionals:  

𝑆(𝑐𝑗 , 𝑌𝑗) = ∑  3
𝑛=1 (∑  

𝑁2𝑗
𝑖=𝑁1𝑗

(𝑌𝑛𝑗(𝑇𝑖) − 𝑐𝑛𝑗)
2

+ ∑  
𝑁2𝑗
𝑖=𝑁1𝑗

(𝑌0𝑗(𝑇𝑖) − √𝑐1𝑗
2 + 𝑐2𝑗

2 +  𝑐3𝑗
2 )

2

) (7) 

We differentiate Eq. (7) with respect to 𝑐𝑛𝑗 , equate the derivatives to zero and get the necessary conditions for an extremum 

in the form of a system of three nonlinear algebraic equations as a result: 25 

 
∂𝑆(𝑐𝑗,𝑌𝑗)

∂𝑐𝑛𝑗
= ∑  

𝑁2𝑗
𝑖=𝑁1𝑗

𝑌𝑛𝑗(𝑇𝑖) − 2𝑁𝑐𝑛𝑗 +  
𝑐𝑛𝑗

∑  
𝑁2𝑗
𝑖=𝑁1𝑗

𝑌0𝑗
(𝑇𝑖)

√𝑐1𝑗
2 +𝑐2𝑗

2 +  𝑐3𝑗
2
= 0, n = 1, 2, 3. 
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In this case, an exact analytical solution of this system is possible. Omitting the calculations, we obtain expressions for local 

estimates, j = 1,…,m 0 

 𝑐𝑛𝑗
 ∘ =

1

2𝑁

(

  
 
1 +

∑  
𝑁2𝑗
𝑟=𝑁1𝑗

𝑌0𝑗
(𝑇𝑟)

√(∑  
𝑁2𝑗
𝑟=𝑁1𝑗

𝑌1𝑗
(𝑇𝑟))

2

+(∑  
𝑁2𝑗
𝑟=𝑁1𝑗

𝑌2𝑗
(𝑇𝑟))

2

+(∑  
𝑁2𝑗
𝑟=𝑁1𝑗

𝑌3𝑗
(𝑇𝑟))

2

)

  
 
∑  
𝑁2𝑗
𝑖=𝑁1𝑗

𝑌𝑛𝑗(𝑇𝑖), n = 1, 2, 3.  (8) 

and get the piecewise constant functions for local estimates 𝑌𝑛
 ∘(𝑇𝑖) = 𝑐𝑛𝑗

 ∘ ,   𝑁1𝑗 ≤ 𝑖 ≤ 𝑁2𝑗, 𝑌𝑛
 ∘(𝑇𝑖) = 0, 0 ≤ 𝑖 < 𝑁1𝑗,  𝑁2𝑗 <

𝑖 ≤ 𝑁𝑓 − 1, n = 1, 2, 3, using Eq.(8) according to Eq.(4); let us present them as the realization of the first stage. 5 

Weighted averaging of sequences of piecewise constant local estimates and the calculations of the estimate functions 𝑌𝑛
 ∘(𝑇𝑖) 

for the second stage are performed using Eq. (5), (6). 

4 Testing of the algorithm for combined processing on model and observatory measurements 

4.1 Testing on model data 

The developed algorithm for combined processing was tested on model measurements. Initial model functions for the 10 

projections of the geomagnetic intensity vector 𝐻𝑀𝐺𝑛(𝑇𝑖) were presented as quadratic functions; the model function for the 

absolute vector magnitude 𝐻𝑀𝐺0(𝑇𝑖) was calculated based on 𝐻𝑀𝐺𝑛(𝑇𝑖), n = 1, 2, 3.  

𝐻𝑀𝐺𝑛(𝑇𝑖) = 𝑎0,𝑛 + 𝑎1,𝑛𝑇𝑖 + 𝑎2,𝑛(𝑇𝑖)
2, 𝐻𝑀𝐺0(𝑇𝑖) = √𝐻𝑀𝐺1

2 (𝑇𝑖) + 𝐻𝑀𝐺2
2 (𝑇𝑖) + 𝐻𝑀𝐺3

2 (𝑇𝑖), 

𝑖 = 0, 1, … , 𝑁𝑓 − 1. The noise error functions 𝑊𝑛(𝑇𝑖), n = 0, 1, 2, 3, were modelled using normally distributed values with 

zero mathematical expectation and the variances 𝜎1
2 = 𝜎2

2 = 𝜎3
2 = 𝜎2  and 𝜎0

2 . The model values of the projections the 

absolute magnitude of the intensity vector were represented as sums: 15 

𝐻𝑀𝑛(𝑇𝑖) = 𝐻𝑀𝐺𝑛(𝑇𝑖) +𝑊𝑛(𝑇𝑖), 𝑖 = 0, 1, … , 𝑁𝑓 − 1, n = 0, 1, 2, 3 (9) 

The following parameter values for the model functions were assigned: 𝑎0,1 = 30000, 𝑎1,1= 0.4206, 𝑎2,1 = −0.0040, 𝑎0,2 = 

4300.4, 𝑎1,2 = 𝑎1,2 = −0.4252 , 𝛼2,2 = 0.0043, 𝑎0,3 = 4089.5, 𝑎1,3 = 0.5013, 𝛼2,3 = −0.0056 ,  𝑇 = 1 sec. Model 

measurement values 𝐻𝑀𝑛(𝑇𝑖) were on the input of the Eq. (8) of the algorithm for combined processing based on piecewise 

constant models. 20 

The case of local intervals without sliding was considered, with the number of points 𝑁, 𝑁1𝑗 = 𝑁(𝑗 − 1), 𝑁2𝑗 = 𝑁1𝑗 + 𝑁 −

1, 𝑗 = 1, . . . , 𝑚, 𝑚𝑁 = 𝑁𝑓. The local estimates 𝐻𝑛𝑗
∘ = 𝑐𝑗

∘, 𝑗 = 1, . . . , 𝑚 were calculated, the sequences of piecewise constant 

estimates 𝐻𝐿𝑛
∘ (𝑇𝑖), 𝑛 = 1,2,3, corresponding to the first processing stage, were formed. 

For a sliding local intervals case with the number of points 𝑁, the sliding step 𝑁𝑑 was selected, as well as the number of 

sliding local intervals 𝑚0 . Local estimates 𝐻𝑛𝑗
∘ = 𝑐𝑗

∘ , 𝑗 = 1, . . . , 𝑚0 , and the estimates of functions 𝐻𝑛𝑗
∘ (𝑇𝑖) , 𝑛 = 1,2,3 , 25 
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𝑖 = 0,1, . . . , 𝑁𝑓 − 1, corresponding to the first processing stage, were calculated; next, the second stage was performed, 

where the estimates 𝐻𝑆𝑛
∘ (𝑇𝑖), 𝑛 = 1,2,3, were found. 

For testing, the following values were selected: 𝑁𝑓 = 96, 𝑁 = 12, 𝑚 = 8, 𝑁𝑑 = 1, 𝑚0 = 84, 𝜎 = 1.0 nT, 𝜎0 = 0.5 nT. On 

Fig.1, the calculation results are displayed for 𝐻𝑀𝐺1  (Fig. 2a), 𝐻𝑀𝐺2  (Fig. 2b), 𝐻𝑀𝐺3  (Fig. 2c).; dashed lines with index 1 

depict the initial functions for the projections of the geomagnetic field intensity vector 𝐻𝑀𝐺𝑛(𝑇𝑖); lines with index 2 5 

represent the noisy measurements of the projections of the geomagnetic field intensity 𝐻𝑀𝑛(𝑇𝑖); piecewise constant lines 

with index 3 represent the results of the first stage 𝐻𝐿𝑛
∘ (𝑇𝑖); solid lines with index 4 show the estimates 𝐻𝑆𝑛

∘ (𝑇𝑖) - the second 

stage results with weighted averaging. 

The performed testing of the processing algorithm on model data for a number of parameters led to the conclusion that the 

second stage of processing reduces the RMS of the errors of the first stage by 60-80% on average. 10 

4.2 Testing on real observatory geomagnetic data 

The developed algorithm was tested using combined processing of 1-second geomagnetic measurements from the 

INTERMAGNET observatory MBO (Mbour, Senegal). The measurements were recorded on 02.01.2014, they began at 

01:16:37 UT, the length of a test fragment was 96 seconds (N 𝑓=96). For the processing algorithm, it was assigned N = 12, 

and the sliding step 𝑁𝑑 = 1. 15 

On Fig.2 the test results are shown for 𝐻1  (Fig. 2a), 𝐻2  (Fig. 2b), 𝐻3  (Fig. 2c). Dashed lines with index 1 depict the 

observatory measurements of the geomagnetic vector projections 𝐻𝑛(𝑇𝑖); piecewise constant lines with index 2 are related to 

the first processing stage – the functions for piecewise constant estimates 𝐻𝐿𝑛
∘ (𝑇𝑖) without sliding are displayed; index 3 

stands for the line corresponding to the result of the second processing stage – the estimate with weighted averaging 𝐻𝑆𝑛
∘ (𝑇𝑖) 

with sliding. 20 

The results of testing of the algorithm for combined processing of measurements of projections and absolute magnitudes of 

geomagnetic field intensity, displayed on Fig.1, 2, proved its satisfactory performance. 

5 Error estimation for the algorithm for combined processing of measurements  

The estimates of errors of the proposed algorithm for combined processing were found using statistical modelling. The first 

stage of combined processing was analyzed. 25 

The initial functions for the intensity vector projections were assumed to be constant on a local interval. The values 

𝐻𝑛(𝑘,𝑚,𝐻0, 𝑇𝑖) = 𝐻𝑛(𝑘,𝑚,𝐻0), 𝑖 = 0,1, . . . , 𝑁 − 1, 𝑛 = 1,2,3 were found using the following equations:  

𝐻1(𝑘,𝑚,𝐻0) = 𝐻0sin𝜗𝑚, 𝐻2(𝑘,𝑚,𝐻0) = 𝐻0cos𝜗𝑚sin𝜑𝑘, 𝐻3(𝑘,𝑚,𝐻0) = 𝐻0cos𝜗𝑚cos𝜑𝑘. 

Here 𝐻0 is an assigned absolute magnitude value, 𝜑𝑘, 𝜗𝑚 are the azimuthal and zenithal angles, 𝜃𝑚 = Δ𝜗𝑚, Δ𝜗 = 2𝜋/𝑀0, 

𝑚, 𝑘- integer parameters, 𝑚 = 0,1, . . . , 𝑀0 − 1, 𝜑𝑘 = Δ𝜑𝑘, Δ𝜑 = 2𝜋/𝐾0, 𝑘 = 0,1, . . . , 𝐾0 − 1. 
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For all possible values of indices 𝑘,𝑚, the realizations of sequences of model normally distributed random numbers with 

zero mathematical expectation 𝑊𝑛,𝑠(𝑘,𝑚, 𝑇𝑖)  were formed, where 𝑖 = 0,1, . . . , 𝑁 − 1 , 𝑛 =0, 1, 2, 3, 𝑠 = 1, . . . , 𝑆0  is the 

number of realization for statistical modelling. For 𝑛 = 0  the variance determining the noise error level for a scalar 

magnetometer assumed the value 𝜎0
2, for 𝑛 = 1,2,3 the noise error variances for a vector magnetometer assumed the value 

𝜎2. For 𝐻𝑛(𝑘,𝑚,𝐻0), 𝑊𝑛,𝑠(𝑘,𝑚, 𝑇𝑖) and 𝑆0 random realizations were constructed:  5 

𝐻𝑛,𝑠(𝑘,𝑚,𝐻0, 𝑖) = 𝐻𝑛(𝑘,𝑚,𝐻0) +𝑊𝑛,𝑠(𝑘,𝑚, 𝑇𝑖), 𝑖 = 0,1, . . . , 𝑁 − 1, 𝑛 = 0,1,2,3, 𝑠 = 1, . . . , 𝑆0. 

The results of the algorithm implementation for the first – the estimates 𝐻𝑛,𝑠
∘ (𝑘,𝑚,𝐻0, 𝑁, 𝜎, 𝜎0), n=1, 2, 3, k=0, 1, …, K0-1, 

m = 0, 1, …, M0-1, s = 1, …, S0 were calculated, depending on the parameters 𝐻0, 𝑁, 𝜎, 𝜎0. The error of the processing 

algorithm 𝜀𝑛
2(𝑘,𝑚,𝐻0, 𝑁, 𝜎, 𝜎0) was found using averaging over the number of realizations for fixed 𝑛, 𝑘,𝑚  

𝜀𝑛
2(𝑘,𝑚,𝐻0, 𝑁, 𝜎, 𝜎0) =

1

𝑆0
∑  
𝑆0
𝑠=1 (𝐻𝑛(𝑘,𝑚,𝐻0) − 𝐻𝑛,𝑠

∘ (𝑘,𝑚,𝐻0, 𝑁, 𝜎, 𝜎0))
2.  (10) 

The error described by Eq. (10) was averaged over the numbers of the absolute geomagnetic vector projections 𝑛 = 1,2,3 10 

and then over different 𝑘,𝑚 . The final formula for estimating the error was the following:  

𝜀 𝑓
2  (𝐻0, 𝑁, 𝜎, 𝜎0) =

1

𝐾0𝑀0
∑  
𝐾0
𝑘=1 ∑  

𝑀0
𝑚=1

1

3
∑  3
𝑛=1 𝜀𝑛

2(𝑘,𝑚,𝐻0, 𝑁, 𝜎, 𝜎0).  (11) 

The results of the combined processing algorithm for the first stage were compared with the results of the operation of a 

possible linear filtering algorithm that was separately applied to the recordings of vector magnetometer channels. The linear 

filtering algorithm in this case was represented by standard equations:  15 

𝐻1𝑛,𝑠
∘ (𝑘,𝑚,𝐻0, 𝑁, 𝜎) =

1

𝑁
∑  𝑁−1
𝑖=0 𝐻𝑛,𝑠(𝑘,𝑚,𝐻0, 𝑖).   (12) 

The error estimate 𝜀 1𝑓
2  (𝐻0, 𝑁, 𝜎) for the linear filtering algorithm was calculated similar to Eq. (10), (11)  

𝜀1𝑛
2 (𝑘,𝑚,𝐻0, 𝑁, 𝜎) =

1

𝑆0
∑ 

𝑆0

𝑠=1

(𝐻𝑛(𝑘,𝑚,𝐻0) − 𝐻1𝑛,𝑠
∘ (𝑘,𝑚,𝐻0, 𝑁, 𝜎))

2, 

 

𝜀1𝑓
2 (𝐻0, 𝑁, 𝜎) =

1

𝐾0𝑀0
∑  
𝐾0
𝑘=1 ∑  

𝑀0
𝑚=1

1

3
∑  3
𝑛=1 𝜀1𝑛

2 (𝑘,𝑚,𝐻0, 𝑁, 𝜎).  (13) 

The efficiency of the proposed algorithm for combined processing of measurements was estimated using the introduction of 20 

a relative decrease factor for the RMS error values 𝜌(𝐻0, 𝑁, 𝜎, 𝜎0)  

𝜌(𝐻0, 𝑁, 𝜎, 𝜎0) =
𝜀 𝑓
2  (𝐻0,𝑁,𝜎,𝜎0)

𝜀1𝑓
2  (𝐻0,𝑁,𝜎)

.   (14) 

For statistical modeling , the following values have been assumed: 𝐻0 = 10000 nT, 𝑁 = 5, 𝑀0 = 50, 𝐾0 = 50, 𝑆0 = 100, 

𝜎0 = 0.5, 0.3, 0.1, 0.03 (indices 1, 2, 3, 4), 𝜎= 0.156, 0.312, 0.625, 1.25, 2.50, 5.00, 10.0. Fig.3 displays the results of 

𝜌(𝐻0, 𝑁, 𝜎, 𝜎0) calculation depending on log2(𝜎/𝜎), 𝜎 = 0.156. The estimates of the introduced factor made it possible to 25 

get an idea of the effectiveness of the proposed combined processing of measurements. 
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Analysis of the graphs shows that, for a fixed value 𝜎 , the introduced factor 𝜌 decreases when 𝜎0  decreases, which is 

physically understandable. It is also seen that this factor tends to limit values with increasing 𝜎 . For a fixed  𝐻0 , the increase 

of 𝑁 leads to the decrease of the factor 𝜌. The performed statistical modeling for a wide range of parameters shows that the 

estimates for 𝜌 are about 0.15-0.3 which indicates the efficiency of the proposed combined processing. 

6 Conclusions 5 

The proposed method for combined processing of the measurements of projections and absolute magnitudes of geomagnetic 

field intensity vectors and the corresponding two-stage algorithm developed appeared to be satisfactorily workable. The 

testing of the developed combined processing algorithm on model and observatory measurement data proved its efficiency. 

The approach realized in this paper, based on the proposed method, provides the increase of accuracy of the measurements of 

the projections of the geomagnetic intensity vector. 10 

Statistical modelling for the developed algorithm for combined processing of measurements shows that, at the first stage, the 

relative decrease factor of RMS errors can reach values of 0.15-0.3 and at the second stage the decrease of the first-stage 

RMS errors can reach approximately 60-80%. 

Further reduction of the RMS noise errors can be implemented based on combined processing using local piecewise linear 

models for the values of projections and absolute magnitudes of geomagnetic field intensity vectors. The proposed combined 15 

processing algorithm can be implemented for many practically important tasks, in particular, when optimizing the operation 

of three-component accelerometer systems or three-component angular velocity sensors. 
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Figure 1: Results of testing of the processing algorithm on model measurement data. 
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Figure 2: Results of testing of the processing algorithm on observatory measurement data.  
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Figure 3: Results of calculation of the relative decrease factors for the errors 
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